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Abstract— Future human space missions for exploring beyond 

low Earth orbit are in the conceptual design stage.  One such 

mission describes a habitat in cis-lunar orbit that is visited by 

crew periodically, others describe missions to Mars.  These 

missions have one important thing in common:  the need for 

autonomy on the spacecraft. This need stems from the latency 

and bandwidth constraints on communications between the 

vehicle and ground control.  A variable amount of autonomy 

may be necessary whether the spacecraft has crew on board or 

not.   

Spacecraft are complex systems that are engineered as a 

collection of subsystems.  These subsystems work together to 

control the overall state of the spacecraft.   As such, solutions 

that increase the autonomy of the spacecraft (called autonomous 

functions) should respect both the independence and 

interconnectedness of the spacecraft subsystems.  This 

distributed and hierarchical approach to system monitoring and 

control is a key idea in the Modular Autonomous Systems 

Technology (MAST) framework. 

The MAST framework enables a component-based architecture 

that provides interfaces and structure to developing 

autonomous technologies.  The framework enforces a 

distributed, hierarchical architecture for autonomous control 

systems across subsystems, systems, elements, and vehicles. An 

example autonomous system was implemented in this 

framework and tested using realistic spacecraft software and 

hardware simulations. This paper will discuss the framework, 

tests conducted, results, and future work. 
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1. INTRODUCTION 

Future exploration missions that will send humans beyond 

near Earth orbit are in the planning stages at NASA.  A 

common concept of operations for these missions is to 

emplace habitats, spacecraft, and logistics in advance of the 

arrival of the crew.  This important equipment will remain in 

place between crewed missions, but during this time, it is 

essential that the health of these assets is maintained.  Ground 

operations support will clearly play a role in this, but with 

reduced communication bandwidth and increased latency, 

operations must advance beyond the paradigm of the 

International Space Station (ISS).  As such, research into 

what technologies are needed to enable the autonomous 

operation of not always crewed human spacecraft is 

underway. 

A key concept in this work is vehicle systems management.  

This paradigm assumes that cross-system or vehicle level 

decisions will need to be made while out of communication 

contact with ground control.  There are two important 

methods of vehicle systems management.  The first is 

necessary when crew is on board and operating the vehicle, 

but requires support that the ground controllers cannot give.  

The second involves vehicle control when no one is on board.  

These uncrewed scenarios occur frequently in advanced 

mission concepts.  The Gateway [1], a cis-lunar habitat that 

will serve as the access point to lunar and Martian 

destinations, is expected to be uninhabited for 11 months per 

year, and for up to 3 years at a time. 

Although Gateway is not the bounding case in terms of 

technical difficulty, since communication into cis-lunar space 

is expected to be frequent and to have low latency, it does 

have its challenges.  The Gateway vehicle will be comprised 

of several modules that will be built by various space 

agencies around the globe.  Like the International Space 

Station, these modules will require tight integration for 

vehicle control.  For example, the life support systems will be 

present on some, but not all, habitable modules, and the life 

support systems that exist will have to function appropriately 

as redundant capabilities for the vehicle stack.  This 

collection of subsystems and modules are both 

interconnected and independent, which is a recipe for 

operational complexity.  Unfortunately, the management of 

operational complexity is largely out of reach for most 

autonomous systems technologies today. 

This paper will detail the efforts to develop a framework that 

would be capable of the successful operation of a complex 

human spacecraft, while respecting the independence and 

interconnectedness of its components and subsystems.  The 

Modular Autonomous Systems Technology (MAST) 
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framework enables a component-based architecture that 

provides interfaces and structure to developing autonomous 

technologies.  The framework enforces a distributed, 

hierarchical architecture for autonomous control systems 

across subsystems, systems, elements, and vehicles.  The 

framework supports communication and transparent 

interfaces between its components and enforces a strict 

command and telemetry flow as a systems engineering tool.  

The most unique part of this framework is the inclusion of 

contract based design concepts that encourages design for 

verification methodologies and supports component-level 

verification playing an important role in overall system 

verification. 

This paper is organized as follows.  Section 2 will give some 

background on previous work on vehicle system 

management and associated frameworks.  Section 3 will 

describe the MAST framework itself.  Section 4 provide 

details on testing that MAST has undergone and results of 

these tests.  Section 5 will conclude the paper with a focus on 

the vision of future work along this promising path. 

 

2. BACKGROUND INFORMATION  

Two important studies were conducted into the autonomous 

operation of periodically crewed human spacecraft [2, 3].  

The first study defined dormancy as uncrewed flight that 

featured a reduced set of operations and described the mission 

stages of uncrewed operations, phases of dormant operations, 

and critical system capabilities that are needed for dormant 

operations. This study provided a brief comparison of 

dormancy operations of past robotic missions to identify 

lessons that can be applied to planned human exploration 

missions. The subsequent study in [3] provided a deep-dive 

analysis into dormant operations on a subsystem basis.  The 

analysis compared the state of the art in human spacecraft 

operation (ISS) with the requirements that will drive the 

operation of an uncrewed human spacecraft in Martian orbit.  

The resulting technology gaps were assessed and 

recommendations for future development were described.  

One of the main recommendations for the control of 

uncrewed and dormant spacecraft was the inclusion of a 

vehicle systems manager (VSM) to provide integrated, 

vehicle-level command and control of the spacecraft. 

Previous work is mostly found in technologies that contribute 

to a VSM-like function.  While the ISS was not designed for 

dormant operations, numerous innovations in autonomous 

payload and core systems control and monitoring have been 

made.  A summary of these advances [4] includes data 

downlink of accelerometer data, onboard thermal 

management, onboard data bandwidth management, 

scientific payload cold storage monitoring and operations, 

and power systems monitoring and emergency response.  

Though these technologies have made promising progress 

towards realizing autonomous systems management, these 

capabilities were developed for an active crewed spacecraft 

managed from Earth.  As such, they do not represent an 

integrated vehicle systems management solution. 

Advanced research has developed a complete fault 

management capability referred to as Advanced Caution and 

Warning System (ACAWS) [5]. ACAWS splits the fault 

management task into fault detection, fault isolation, and 

fault impacts reasoning, but uses a single spacecraft 

component and fault model.  First tested on a low-fidelity 

surface habitat, ACAWS is being adapted to perform fault 

management for the Orion spacecraft, both for flight 

controllers and also for crew [6].  The Autonomous Power 

Controller subsystem level controller and fault management 

functions are integrated with a VSM including a spacecraft-

wide automated planner, subsystem level fault management, 

and plan execution system, running on modern avionics and 

path-to-flight hardware [7].  While this work demonstrates 

the successful application of a hierarchical autonomous 

system architecture, the scope of the experiment was limited 

and did not demonstrate subsystem integration or 

interconnectedness.  Likewise, plan execution technology has 

been tested onboard the ISS as a way to automate payload 

operations. AMO EXPRESS [8] describes a demonstration of 

how an experiment facility can be autonomously operated, 

with simple integrated fault detection and response 

capabilities.  The NASA Platform for Autonomous Systems 

(NPAS), is a software platform used to make systems  operate 

autonomously using a  model-based systems engineering 

(MBSE) approach [9].  NPAS is able to use live models for 

real-time autonomous operations, largely for integrated 

system health management.  

 

Plant operations, such as water processing [10], have 

benefited from similar systems management technologies.  

These examples integrate many processes and subsystems 

into decision support and autonomous operations tools.  

However, these systems (though larger) are typically less 

complex and less interconnected than a human spacecraft’s 

subsystems.  Likewise, a sort of vehicle systems management 

occurs on robotic spacecraft en route to deep space 

destinations, but as noted in [1], these systems typically 

employ their long time to effect to bring the spacecraft to a 

safe state for ground controllers to assess and recover.  

Human spacecraft will not have the same recovery options in 

many circumstances. 

 

Autonomous systems are complex, difficult to test, and 

nearly impossible to conduct formal analysis on to find 

performance guarantees.  However, the use of autonomous 

systems technology for human spacecraft will require 

convincing verification and validation.  The MAST 

framework has a path to formal analysis and will create 

assume-guarantee contracts as long as the autonomous 

technology components can be verified individually.  This 

paper will describe the successful integration of several 

subsystems, modules, and processes with a vehicle system 

manager in the MAST framework and discuss the contract-

based design approach that was taken. 
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3. THE MAST FRAMEWORK 

The MAST framework is a component-based system that 

provides interfaces and structure to developing autonomous 

technologies.  The categories of technologies are broken into 

several “buckets” (see Figure 1) that are based on the OODA 

loop1 (Observe, Orient, Decide, Act) concept.  These buckets 

are each identified with an autonomous functionality that is 

needed in the control of an autonomous system.  There are 

three types of autonomous systems that will be defined: 

1. Spacecraft subsystem - operates independently 

both nominally and in response to fault 

detection, isolation and recovery; examples are 

Power, Communications, Life Support. 

2. Mechanical events & processes – examples 

include docking of spacecraft (i.e., Automated 

Rendezvous and Docking), grappling with 

robotic manipulators. 

3. System-level Intelligence – onboard ability for 

system-level planning, health monitoring, and 

mission management; example is the Vehicle 

System Manager (VSM). 

 

Figure 1: Open-loop Framework Diagram 

These various types of autonomous systems that will be 

implemented with buckets of autonomous functionality are 

henceforth referred to as “clusters.”  Each cluster will have 0 

to n buckets of each type, depending on the needs of the 

system that the cluster is servicing.  The various buckets will 

have different requirements and structure, but this section 

will first expound upon three main reasons for creating this 

architecture: 

1. Using products from autonomy across levels of 

abstraction, 

2. Creating systems that are straight-forward to 

verify, or are constructed with guarantees, and 

3. Allowing for variable autonomy. 

 Figure 2 gives an illustration of an example spacecraft 

architecture that has several autonomous modules, where 

each autonomous module is associated with a cluster, which 

contains an instance of the component-based architecture 

 
1 https://en.wikipedia.org/wiki/OODA_loop 

shown in the Figure 1 above.  This example architecture is 

loosely based on the Gateway concept of Autonomous 

Systems Management (ASM) architecture. 

 

Figure 2: Example Autonomous Spacecraft Diagram 

Distributed and Hierarchical Architecture 

A key component of this framework is its ability to support a 

distributed and hierarchical architecture.  This architecture is 

a common systems engineering construct used to reduce 

overall complexity by allowing components of the system to 

handle what they can and delegate up issues that are outside 

of their purview.  The MAST framework supports this 

architecture by providing templates for command and 

telemetry flow through this architecture.  For example, the 

State Description bucket provides for a unified message to 

send telemetry and requests up the hierarchy; at the VSM 

level, this State Description message would provide 

information flow to the human operators (on board or in 

ground control).  The Achievement block would send 

commands down to clusters on a lower level of the hierarchy.  

Likewise, the Sensors/Observers block would accept data 

from hardware or from the State Description message from 

lower level clusters and the Command Intent Interpretation 

bucket would accept command messages from either ground 

control (VSM) or clusters above it. 

An example of this data flow is as follows.  Consider a trip 

on a circuit in the Power Distribution (PD) subsystem that 

removes power from the Life Support (LS) system’s 

Spacecraft Atmosphere Monitor (SAM) and some payloads.  

The PD autonomous cluster would sense this fault and send 

information up to the Habitat Element System Manager 

(HESM).  The LS cluster would likewise sense that the SAM 

had been disrupted, but would know that the cause could be 

internal (fault in the SAM) or external (power loss) to the LS 

cluster.  Therefore, it would send information up to the 

HESM as well.  The HESM cluster, with this data, would be 

able to instruct the LS cluster to standby with respect to this 

error while the PD subsystem generated and executed 

recovery options. 

 

This example is simple, but it makes important points while 

allowing for several quick extensions.  For example, assume 

that the trip was due to overcurrent caused by an error in one 

of the payloads on the circuit.  This would drive the inclusion 

of a Payload Systems Manager (PSM) that accumulates the 
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states of the payloads.  It would also mean that initial 

recovery options by the PD cluster would be unsuccessful.  

At this point, the HESM would have to get involved with 

recovery, for example, and choose to turn off the payload 

(either due to priority or due to data from the PSM) before 

commanding the PD to again reset the circuit.  One could also 

imagine that the power problem somehow originated from 

power creation, which for Gateway, resides on a different 

module.  In this case, the diagnosis and recovery process 

would flow up to the VSM cluster as well. 

One of the pre-requisites for a distributed and hierarchical 

fault response as outlined above is the ability to have models 

that support consistent levels of abstraction.  Another pre-

requisite is well-defined interfaces between systems on the 

same level and between clusters on the lower level.  What this 

means is that each cluster needs to know when it depends on 

a different cluster.  Going back to the example, the LS cluster 

knows that it cannot diagnose the SAM failure due to the 

dependency of the fault tree on data from the PD system.  

Instead of having each cluster handle the acquisition of this 

data from the appropriate cluster, the framework stipulates 

that data connections can only be made by the cluster one 

level up in the hierarchy.  In that sense, the LS model knows 

about the dependency, but the HESM model knows what the 

dependency is. This means that the level of abstraction of 

each cluster’s model fits to its purpose and level on the 

hierarchy.   

Further requirements on data sharing and model consistency 

include the following: 

• The framework shall enforce consistency of 

model definition. 

• The variables in the models shall self-enforce 

units and assumptions (units and assumptions 

should be explicit in variable definition). 

• MAST shall ensure visibility and query-ability 

of variables and products within hierarchical 

constraints as a rule (truly internal variables 

should be discouraged). 

Design for Verification 

Autonomous systems are complex, difficult to test, and 

nearly impossible to conduct formal analysis with guarantees.  

However, the use of autonomous systems technology for 

human spacecraft will require convincing validation and 

verification; for systems with emergent behaviors, this 

requirement becomes even further out of reach of the state-

of-the-art.  The MAST framework has been built with a path 

to formal analysis, and allows the designer the potential of 

creating guarantees as long as the autonomous technology 

buckets can be verified individually.  Specific requirements 

include the following: 

• The framework shall have the ability to 

interface with temporal logic specifications. 

 
2 http://yaml.org/ 

• The framework components shall require 

specific definitions for the incoming and 

outgoing data. 

Thresholds could be defined as part of the dataports, for 

example, power data input can only be from 0-100.  Errors 

would be thrown if data were out of range. 

Specifically, the MAST framework supports a contract-based 

design approach [11].  The contract-based design can be 

implemented on several levels, but the framework right now 

enforces contracts within the cluster, between the buckets.  

This is instantiated in the following way.  First, each bucket 

supports having a set of assumptions on the data that comes 

into the bucket.  The assumptions that can be expressed as 

simple logical expressions can be checked in real-time as data 

enters the bucket.  Likewise, buckets support guarantees on 

data exiting the bucket.  The guarantees that can be expressed 

as simple logical expressions can be checked in real-time just 

before data exits the bucket.  These assume-guarantee 

contracts between the buckets can be verified using various 

formal methods techniques.  This approach provides a benefit 

in that the buckets themselves then only have to be verified 

as satisfying the guarantees, given the assumptions. 

 

The checks on the assumptions and guarantees on each 

bucket can be entered into a YAML2 file for that bucket.  The 

MAST framework supports reading in this configuration file 

at runtime and will automatically run the checks at the 

appropriate times.  These checks can be tied, via the 

configuration file, to separate callbacks for successful or 

failing checks.  These callbacks can be used to disrupt the 

flow of execution of the bucket, if necessary.  For example, 

if an incoming (assumption) check fails, the bucket could not 

possibly run as intended.  As such, the execution could 

simply fail with a message, giving operators an indication of 

where the failure originates.  Alternatively, the callback could 

check a broader set of assumptions, and execution of the 

bucket could continue using an alternate control sequence 

that satisfies only a subset of the guarantees.  This behavior 

is important if guarantees include both safety and 

performance specifications.  Upon failures, safety 

specifications could be maintained while performance 

guarantees are sacrificed. 

 

A similar interaction with the outgoing checks can occur, but 

the difference here is that the option to return execution to the 

bucket is given.  This gives the bucket the chance to self-

correct upon guarantee failure, for similar reasons as given 

above. 

Variable Autonomy 

Because the ASM architecture is meant to be used with 

human spacecraft that will see both crewed and uncrewed 

stages, there is a range of autonomy that will be required for 

operation.  For example, the communications system may 

need to be fully autonomous during dormancy, but can be 

crew-controlled during critical stages in Mars orbit insertion.  
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A key assumption for this feature is that the "reasoning" part 

of the autonomous system will not need to be variable- there 

should always be data analysis, planning, and state 

description.  However, the important parts of the system to 

have an "autonomy dial" are the command and action-based 

components.  So, requirements for this feature are given more 

on a component-by-component basis. 

Additional Features 

The MAST framework has been designed for distributed 

execution to support the ASM architecture.  This is 

implemented through its integration with Core Flight 

Software (cFS)3.  MAST allows the application to be split 

along cluster lines.  All of the buckets in the cluster (running 

the autonomous control loop) must run in the same process.  

The inter-cluster communication uses a “blackboard” that 

allows quick data transfer between the buckets in the cluster.  

It also facilitates the minimization of check occurrences when 

possible.   

 

The MAST framework facilitates data logging via its 

integration with the Lightweight Accumulator  

Gathering Efficiently in Real-time (LAGER) logging 

software.  LAGER supports zero-copy transport and minimal 

code interfaces.  It features efficient file writing/sizing and is 

built for various data sources (taps), accumulators (kegs), and 

consumers (mugs).  Figure 3 shows a representation of the 

LAGER software. 

 
Figure 3: LAGER 

 

Trend analysis is an important function that many types of 

autonomous systems require.  The integration with LAGER 

supports the on-line creation of trending baselines and trend 

determination.  Likewise, mode and resource management 

are important functions for autonomous systems, and 

libraries incorporating these capabilities have been integrated 

into MAST as well. 

 

4. EXPERIMENTS  

Two experimental scenarios were implemented and run 

within the MAST framework.  The first follows from the 

power fault scenario previously described.  In addition to the 

interactions between the power distribution and life support 

systems, the scenario also included an Automated 

Rendezvous and Docking (ARD) process with Orion.  This 

autonomous process featured a flight rule that the rendezvous 

would be paused at certain hold points if the atmosphere 

 
3 https://cfs.gsfc.nasa.gov/ 

inside the habitat was unacceptable.  As such, the VSM 

component was able to pause the ARD process and direct the 

recovery of the overcurrent PD fault by turning off a payload.  

Once the SAM recovered, the ARD process was commanded 

to continue. 

The second experiment involved failures that were more 

continuous in nature.  The scenario involved a slow coolant 

loop leak into the cabin.  The extra water increased the 

humidity of the atmosphere, which would drive the system to 

slowly increase the temperature of the cabin to accommodate 

it.  During an eclipse, this stress on the shell heaters could 

uncover battery cell degradation.  This experiment featured 

two trend analyzers, for coolant level and battery power draw.  

The scenario also exercised the command and control 

architecture by adding element system managers to the ASM 

implementation, shown in Figure 4 below. 

 
Figure 4: ASM Architecture for Second Experiment 

In both experiments, the MAST framework worked as 

expected.  The benefits of the contract checks were 

immediately useful, as these checks were capable of finding 

errors during the development and integration of the 

autonomous system quickly and efficiently.   

 

5. CONCLUSIONS AND FUTURE WORK 

A framework to support the operation of a distributed, 

interconnected system of systems, such as human spacecraft, 

was presented.  The MAST framework supports the careful 

design of interconnections between distributed systems 

through a hierarchical command and control architecture.  

This framework promotes a design for verification paradigm 

through the integration of runtime monitoring and contract-

based design.  MAST has been applied to example scenarios 

that incorporate several spacecraft subsystems and processes 

to demonstrate feasibility and performance. 

Future directions for the MAST framework are many.  First, 

tighter integration with spacecraft subsystems will require the 
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full adoption of cFS.  This will increase the performance and 

require more stringent integration with real-time operating 

systems.  Second, technology integration to support the 

planning and execution pipeline is needed to close the loop in 

the MAST cluster.  Current technologies rarely support the 

type of distributed and hierarchical control needed for the 

proposed Gateway control architecture, and so this is another 

future direction. 

Data management is hugely important in spacecraft control, 

particularly because it is a resource with availability 

constraints not commonly encountered on Earth.  Loss of 

communications, latency, and reduced bandwidth as humans 

travel further from Earth are all challenges to which any 

autonomous spacecraft must be robust.  The MAST 

framework needs to have utilities available to support these 

realities.   Finally, the integration of other systems and system 

managers will continue to stress the framework.  For 

example, the addition of a robotic spacecraft inspector or 

maintainer will provide the framework another resource to 

schedule and more recovery options for various faults and 

emergencies. 

The MAST framework and associated experiments have 

provided inspiration for the direction of the Gateway Vehicle 

Systems Manager and autonomy architecture.  MAST will 

continue to play a role in the technology development and 

requirements creation leading up to the next destination in 

human space travel and beyond. 
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